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Abstract

Systems administrators of large clusters often need to 

perform the same administrative task hundreds or 
thousands of times.  Administrators have traditionally 

performed some time-consuming tasks, such as operating 

system installation, configuration, and maintenance, 
manually. By combining network services such as DHCP, 

TFTP, FTP, HTTP, and NFS with remote hardware 

control and scripted installation, configuration, and 
maintenance techniques, cluster administrators can 

automate these administrative tasks. 

Scalable cluster administration addresses this 
challenge: What hardware and software design 

techniques can cluster builders use to automate cluster 

administration on very large clusters?  We describe the 
approach used in the Mathematics and Computer Science 

Division of Argonne National Laboratory on Chiba City I, 
a 314-node Linux cluster; and we analyze the scalability, 

flexibility, performance and reliability benefits and 

limitations from that approach.

1. Introduction 

In 1994 Thomas Sterling and Don Becker, then 

working for NASA, built the first commodity PC-based 

cluster from sixteen PCs [1][2][3].  This new platform 

quickly gained acceptance amongst computer and 

computational scientists for delivering super-computer 

performance for many applications at a fraction of super-

computer cost. Today many educational and research 

organizations use the commodity PC-based cluster as 

their high-performance computing platform of choice. 

While the PC-based cluster has brought high-

performance computing to small and medium 

organizations, it has also become a significant presence 

amongst the largest super-computers in the world. See the 

Top 500 super-computers list at http://www.top500.org/

[4]. 

The trend towards larger clusters has introduced a new 

set of design and scalability challenges for cluster 

administrators [5]. 

To address these challenges administrators have 

looked for ways to automate administrative activities. The 

first step in automating cluster administration generally 

involves setting up one or more hosts running network 

services used in automated boot, build, monitor and other 

cluster administration activities. Common network based 

administration support services include: 

o DHCP for network initialization 

o TFTP for boot image delivery 

o FTP, HTTP, NFS, and SMB for file delivery 

o A configuration information delivery service 

o SNMP for monitoring and event notification 

o SYSLOG for OS and core service logging 

o DNS for host name resolution 

o NTP for time synchronization 

We call machines providing these services 

“management servers”.  The  challenge is to determine 

how many management servers are needed and how the 

services are  distributed between them. 

Most clusters require very few management servers.  

For all small clusters, and most medium to large clusters, 

an organization’s existing infrastructure servers can 

provide these services to clusters. 

To determine whether one management server is 

sufficient an administrator must determine how many 

cluster clients will concurrently use the services and how 

quickly these management service requests must be 

handled. 

In addition, services used during different phases in a 

machine’s life cycle may have totally different usage 

patterns and performance characteristics. For example, 

network interface configurations with DHCP and boot 

image delivery with TFTP are generally only used at 

machine boot time and require relatively little 

management server capacity to service. File delivery 



services using protocols such as FTP, HTTP, NFS, and

SMB are used heavily during machine build or upgrade.

These services also demand significant storage and 

network capacity to house and deliver the files. Logging

(SYSLOG), monitoring (SNMP), and remote console

services are most important during normal operations and 

typically have constant low to moderate requirements.

As the size of a cluster grows and the build and

reconfiguration rates increase, the demand for these

services may exceed the capabilities of a single machine

or of the available infrastructure servers. Two options to

address this management scalability limitation include

separating services onto different machines and upgrading

servers so they can service more requests.  These steps are 

generally enough to scale most management services for 

large clusters. 

What are the scalability characteristics of the various

services?  Some services, such as file delivery services,

may need to deliver hundreds of megabytes in order to

build a single node.  How does one scale these services so 

that hundreds of nodes can rebuild in a short period of 

time? This paper presents the scalable cluster

management approach used to address these and similar

questions on Chiba City I at Argonne National

Laboratory.

2. Importance of Management Scalability 

For most clusters, management scalability is not an

issue, because the number of managed nodes is low, the 

rebuild and reconfigure rates are low, or the rebuild and 

reconfigure performance is not a concern. 

Management scalability is important on Chiba City 

because its primary purpose is to be a scalability testbed,

built from open source components, for the high-

performance computing and computer science

communities. As a scalability testbed, Chiba City is 

dedicated to the research, development, and testing of 

architectures, algorithms, software, and protocols that

push the scalability boundary of clusters and the 

applications that run on them.

Although built and operated primarily using open 

source software, the goal is for Chiba City software to

support installation and operation of any open or closed-

source operating system on non-management nodes. In

support of this objective we developed a cluster

administration toolkit, called the City Toolkit [7],

designed to support the unattended installation of 

arbitrary operating systems. Because Chiba City is a

testbed we need to rebuild and reconfigure nodes

frequently. The combination of a large node count and a 

high rebuild and reconfiguration rate makes a scalable

cluster management design critical.

With a scalable cluster management design, rebuilds,

reconfigurations, and general management activities can

run quickly, efficiently and will improve overall cluster

availability and reliability.

Using the City Toolkit, we can change a master

configuration database that specifies the desired image

(OS + configuration) for any number of managed nodes 

and can complete a parallel rebuild in less than 30

minutes. Our long-term goal is to support node rebuilds

on demand; for example, to support dynamic OS

requirements on a per job basis and so that a kernel

developer is able to quickly rebuild 500 nodes with a

custom kernel for scalability testing and debugging.

Another reason scalable management is important is

that with the widespread adoption of clusters for high-

performance computing, we believe the research and 

commercial communities will deploy clusters with tens

and possibly hundreds of thousands of nodes in the next

20 years. As a scalability testbed, Chiba City must be able

to provide an environment where researchers can

investigate scalable software and management challenges

that will undoubtedly affect all very large commodity PC-

based clusters.

3. Chiba City Management Architecture 

Figure 1 shows all the components in Chiba City.
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(256 systems)
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Cluster Management

and Services
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High Performance
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Fig. 1. Chiba City component diagram 

Physically, Chiba City comprises blocks of physically 

contiguous nodes called towns.  A town consists of 

between 8 and 32 application-usable nodes, one 

management node called a mayor, an Ethernet network 

switch, serial concentrators connecting node serial ports 

to the mayor, and network-addressable remote power 

controllers. Most Chiba City towns fit into two racks. The 

only management-related cables coming from the two 

town racks are dual Gigabit Ethernet uplinks, one 

management Ethernet network uplink, the mayor’s serial 

port cable, and five power cables. A town has all the 

hardware necessary to operate as an independent 

subcluster. As a matter of fact we’ve taken one such 

Chiba City town to a conference. 

Towns are not merely a physical partitioning scheme. 

The concept defines how management software and 

services--required to build, configure, and operate the 

nodes in a town--work. An example of that physical and 

management link is the boot-and-build process for nodes. 

When a node boots, it sends its boot loader prompt (LILO 

or GRUB) over its serial port. The town mayor, which 

runs serial port monitoring software, detects that boot 

loader prompt and sends a response, telling the node 

either to boot or build. The build tools used to build a 

node and the software packages installed on that node are 

accessed from the mayor via NFS or HTTP/FTP. 

The mayor provides the following services: 

o Relay or proxy access to the master cluster database 

o DHCP for configuring network interfaces 

o TFTP access to boot images 

o Console monitoring, logging, and interactive access 

o Root NFS used during node build and debugging 

o NFS access to non-local software 

o NFS, HTTP, or FTP access to software packages 

installed during a build 

o NFS-based file relay service for copying files to or 

from the nodes before and after job runs (Chiba City 

doesn’t have a global general-purpose file system) 

o Relay service for global management commands 

Managing the town mayors, login machines, file 

servers, and other servers is a master management server 

called the president.  The president behaves like a mayor 

to the nodes it manages. In addition, the president 

contains the master copy of the images (OS + 

configuration), layered software packages, and the master 

cluster configuration database. To synchronize software 

between the president and the mayors we use rsync [10]. 

Access to the master configuration database on the 

president is available through proxies on mayors. 

We chose this three level hierarchical design because 

we felt it could architecturally be extended to more levels, 

thus providing a form of scalability. Using a ratio of 32 

managed nodes to one management server we could build 

a 1024-node cluster with the current three levels in Chiba 

City.  Using the same managed to management node 

ratio, using four hierarchical levels we could build a 

cluster with over 32,000 nodes. 

As an example of how this management hierarchy 

affects administrative activities, the following steps 

describe the process of modifying a node image and 

rebuilding nodes with that image. Images, as we defined 

them in the City tools, are the combination of disk 

initialization information (partitions, file-system types, 

and initial file-system contents), a collection of scripts 

that drive the build process, and a set of software 

packages and configuration files. 

1. Change the node image on the president (for 

example, change the desired root file-system size). 

2. Rsync all the images from the president to the 

mayors. 

3. Modify the master configuration database specifying 

which nodes need the new image. 

4. Reboot or remotely power cycle the nodes that need 

the new image. 

The nodes then boot and are directed by their mayor to 

build with the database specified image. When the nodes 

finish building they update the master configuration 

database. 

4. Elements of the Chiba City Management 

Architecture That Scaled Well 

Overall we found many aspects of the Chiba 

management architecture worked well on a 314-node 

cluster.  The following sections describe these aspects 

that, in principle, we feel could be used to manage 

clusters with tens of thousands of nodes. 

4.1 Dedicated Management Servers 

An important aspect of our design is that management 

servers are not available to user applications. Although 

that design decision seems obvious to us, many people 

consider this a hardware tax because the hardware isn’t 

available to cluster users. Separating management servers 

is particularly important in our environment because most 

cluster applications expect dedicated node access. 

Dedicated node access is important for many parallel 

applications because they execute on multiple nodes in 

lock-step and when any single node experiences 

slowdown all the nodes running that application are 

affected.



Our cluster build-and-configure software was designed 

to run in a RedHat Linux environment. The software 

requirements for the management services are often 

different from those of the application software. For 

example, currently our management and software runs 

under RedHat 7.1, but is capable of installing on user 

nodes other versions of RedHat, different distributions 

such as Mandrake, or other operating systems such as 

FreeBSD.

4.2 Specialized Management Server Hardware 

Management servers need a hardware configuration 

tuned for running management services. This hardware 

configuration may often be different from what user 

application require. For example, management servers 

may require hundreds of gigabytes of disk to store or 

cache software packages, high-performance gigabit 

commodity networks to handle high conventional TCP/IP 

communication loads, and multiple CPUs to handle very 

high context switching rates associated with many clients 

making simultaneous management service requests.  To 

fulfill these hardware requirements, high-end large 

footprint machines are needed.  In contrast, large clusters 

typically look for very small footprint machines for 

workhorses nodes used by cluster applications.  One 

thousand 1U application nodes can require 25 standard 

racks. If a compute node is 2U, 3U, or 4U, the necessary 

floor space doubles, triples, or quadruples.

Selecting the appropriate management server hardware 

is more important than we had originally thought.  Care 

should be taken that the appropriate amount of RAM, 

number of CPUs, disk space, I/O bandwidth, and network 

bandwidth are available on management servers. 

4.3 Master Management Server 

Once settled on dedicated management servers, one 

needs to decide how to distribute services between those 

servers. The approach used on Chiba City was to give a 

single machine the role of master management server, 

which we called the president.  A president is the 

authoritative source for all software and configuration 

information, the recipient of all status information, and 

the point from which all administrative function could be 

issued.  We found this model to be straightforward and 

easy to use.  From the president we have the ability to 

build, configure, and update other management servers 

and to initiate management operations that are forwarded 

to the mayors responsible for the desired target nodes. We 

believe that a canonical source for all software, from 

which all management commands might be issued, should 

scale to any size cluster.  For this to be the case, though, 

management software must divide and delegate 

operations to subordinate management servers. 

4.4 Rebuildable Management Nodes 

Once we established that we had single master 

management server, the president, we developed 

procedures for rebuilding other management servers.  It 

then became possible to rebuild a management node and 

transfer the president role to it using only a few manual 

steps, in effect upgrading the president.  The scalability 

advantage in automating management server builds is that 

it’s easy to add more management servers as the number 

of managed nodes grows. 

4.5 Remote Power Control 

Remote network-based power control is an essential 

component of hands-off administration.  Without it, some 

administrative and operational activities would require 

individuals walking up and down aisles of computer racks 

pushing buttons.  This is impractical, not just from a 

human time/cost perspective, but also because of the 

likelihood of pushing the wrong button. 

4.6 Remote Console 

We found a remote console to be a useful tool for node 

identification, boot control, and network failure diagnosis 

and recovery.  In vary large clusters a remote console may 

not be essential if network or other techniques are used to 

identify nodes and control the boot process. 

4.7 Parallel Management Algorithms 

Early in the City Toolkit design we realized that along 

with parallel hardware and management servers 

independently managing a subset of nodes, we also 

needed parallel management software algorithms.  One 

very effective tool we used heavily is PDSH [8]. PDSH 

provides a simple thread based model for executing 

commands on multiple nodes in parallel. 

As mentioned above, another essential design point in 

scalable management software is delegation.  By taking a 

single centrally issued command, splitting it into parallel 

components, and delegating those to other management 

servers, arbitrary management operations can scale to 

thousands of nodes and can execute quickly. 



5. Elements of the Chiba Management 

Architecture That Did Not Scale Well 

Two and a half years of operational experience with 

the current Chiba City management architecture has 

revealed several deficiencies that we feel must be 

addressed in order to effectively administer even larger 

clusters.  These deficiencies can be grouped into the 

following categories: limited flexibility, poor 

performance, high overhead or complexity, and lack of 

fault tolerance. Key deficiencies follow. 

5.1 Hard Mapping between Managed and 

Management Nodes 

The most unscalable and problematic aspect of the 

Chiba City management architecture was the direct 

dependence between a fixed set of contiguous nodes and a 

single management server. One consequence was very 

poor management service load distribution where a subset 

of management servers would be overloaded while the 

remaining servers were effectively idle. 

5.2 Management Node Failures 

When a mayor fails, all of the nodes beneath it in the 

hierarchy also fail due to NFS, DHCP, console, and other 

dependencies. Moreover, it is also impossible to rebuild 

or reconfigure dependent nodes because the client-to-

mayor link is wired in hardware and software designs. 

In the worst-case scenario, where the president fails, 

the entire cluster becomes unusable because most 

administrative activities depend in some way on the 

central configuration database. 

5.3 Console Access through Management Nodes 

Having console access tied to specific mayors meant 

that if a mayor was unavailable all the nodes it managed 

would be unusable. 

5.4 All Management Services on Every Mayor 

To make every town operate as an independent sub-

cluster we configured every mayor with all the 

management services. This is very inefficient and a major 

headache to support since many services could be 

provided by fewer servers, or even one. Two examples 

are DHCP and the master configuration database.  In our 

particular case in which all Chiba City was under a single 

flat IP space, running 11 DHCP servers on the same 

subnet was a challenge. 

5.5 Unsuitability of Some Services for a 

Hierarchy

Some management services, such as DHCP, NTP, 

TFTP, and console are more difficult to install and 

operate hierarchically (and don’t require or benefit from 

it).

5.6 Ratio of Management Server to Managed 

Node

It’s impossible to pick a single “right” ratio of mayor 

to managed nodes for all services because each service 

has different scaling characteristics. For example, the 

number of concurrent NTP or DHCP requests that a 

single server can handle is very large, probably in the 

hundreds or thousands, while the number of concurrent 

lHTTP or FTP large file get requests that could be 

handled is quite small (in the 10-20 range if the 

management node has approximate 10x better Ethernet 

bandwidth than the nodes it manages).  If both of these 

classes of service are configured in a fixed 32 client to 1 

server ratio, as was the case on Chiba City, we end up 

having more NTP and DHCP servers than are needed and 

fewer HTTP and FTP servers than could be effectively 

utilized. 

Consequently we found a 32 to 1 ratio compromise 

misses almost all the optimal client to server ratio targets. 

5.7 Hierarchical Configuration and Software 

Push

Pushing configuration changes and commands down 

the three level hierarchy is a time consuming process. 

Having to deal with four or five levels would be a serious 

problem. For example, to apply software or configuration 

changes to nodes requires applying the change on the 

president, pushing the change iteratively down the 

hierarchy, and applying the change on the target 

machines. This multi-step, fixed-path design is vulnerable 

to cascading failures. At one point we had 200 MB of 

software required on every management node; pushing 

this much software every time we changed something was 

a slow and painful process, even when using a smart push 

tool like rsync. 

5.8 Configuration database bottleneck 

Most administrative cluster activities require 

information from the configuration databases. Some 

notable examples include information on: whether to boot 

or rebuild a machine when it powers up, which image, 

software packages, and configurations to apply to a node 



being rebuilt, and which users have access to which 

nodes.

The combined effect of this direct database access is 

that our database could be overwhelmed during intense 

build, configuration, or job start/exit activity. 

6. Conclusion 

Management scalability is a hard problem. It’s also a 

moving target. As management scalability problems are 

identified and fixed we are able to build and operate 

larger clusters. With larger cluster we find new scalability 

challenges that were not apparent at a smaller scale. 

Our first architecture has taught us many valuable 

lessons and Chiba City I has proven to be an excellent 

platform to carry out scalable design experiments. This 

has been the case because we have the ability to take 

interesting new ideas and deploy them to establish real 

benefits and disadvantages. 

In the category of flexibility we have learned that: 

o The ratio of managed node to management server 

needs to be based on the scalability characteristics of 

each service instead of a hard ratio derived from the 

scaling characteristics of the least scalable service. A 

design is needed that will allow use of different ratios 

for different services. 

o In clusters with serial console, tying node consoles to 

a single management server limits where the services 

using that console may run.  We need a more 

network-like model for console access that makes 

consoles available to many services on multiple 

management servers. 

o While a hierarchical approach may work well for 

some services it doesn’t work well for others.  We 

need a more flexible design that can distribute 

services between as many machines as necessary 

using a topology appropriate for each service. 

In the category of performance we’ve learned that: 

o Statically linking managed node to a specific 

management node leads to poor server load 

distribution.  This directly affects management 

service performance. 

o Instead of using multiple steps to push software down 

the hierarchy we need more intelligent demand based 

caching. If software and configuration changes are 

cached on demand, applying configuration changes 

could be more automated and efficient. 

o NFS performs poorly. 

In the category of Fault Tolerance we have learned: 

o By depending on a single president for most 

administrative activities we have created a single 

point of failure that can bring an entire cluster down.

o When managed nodes depend on specific 

management nodes any management node failure can 

bring parts of a cluster down.  Those part of the 

cluster will remain down until the failed management 

node is fixed.

o NFS failure situations are difficult to recover from.  

We need to use more fault tolerant networking 

protocols between managed and management nodes.

o The net effect of making managed nodes depend on 

individual management nodes, or a single president, 

is that any management failure gets amplified to the 

remaining cluster nodes. More research is needed to 

reverse this amplification effect.

7. Future Work 

Based on our experience we have identified several 

management design changes that we intend to investigate 

which could lead to architectures capable of managing 

thousands of nodes.

To address the single point of failure problem with the 

president while maintaining the advantages of an 

authoritative configuration, software, and administrative 

machine, we are going to explore applying high-

availability techniques to the president. One of the leading 

president services that could benefit from high-

availability is the master configuration database. 

More research into stateless network protocols and 

dynamic or flexible managed to management node links 

could lead to a solution to the management node failure 

amplification effect and to the unbalanced management 

server utilization problem. 

Although the hierarchy has in some ways been useful, 

we believe research needs to be done into alternate 

topologies tuned to the specific requirements of various 

management services. 

Another intriguing management service design 

approach that we believe needs to be explored is using 

parallel application programming techniques, such as 

MPI, to design and develop these services. We see 

parallelization of management applications and 

commands as a promising scaling technique. There is no 

reason to believe that the scalability benefits achieved by 

applications using parallel techniques could not apply to 

management services and applications. 

Finally, to avoid pushing complete software 

repositories between management servers, additional 

research should be done into using demand based 

software distribution and caching techniques.
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